Sign by JuanCho_Hdez

miércoles, 21 de noviembre de 2012

Límites

En matemática, el límite es un concepto que describe la tendencia de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor. En cálculo (especialmente en análisis real y matemático) este concepto se utiliza para definir los conceptos fundamentales de convergencia, continuidad, derivación, integración, entre otros.

Segun Wikipedia:   (Cita Original)
El concepto se puede generalizar a otros espacios topológicos, como pueden ser las redes topológicas; de la misma manera, es definido y utilizado en otras ramas de la matemática, como puede ser la teoría de categorías.
Para fórmulas, el límite se utiliza usualmente de forma abreviada mediante lim como en lim(an) = a o se representa mediante la flecha (→) como en an → a.

Limite de una Función

En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de la función. Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.
Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:
 \lim_{x\to c} \, \, f(x) = L
si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.
Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:

"El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distancia entre la imagen de x y L es menor que ε unidades".

Esta definición, se puede escribir utilizando términos lógico-matemáticos y de manera compacta:

   \begin{array}{l}
      \underset {x\to c}{\lim} \, \, f(x) = L \iff  \forall \varepsilon > 0 \ \ \exists \ \delta > 0 : 0<|x-c|<\delta \longrightarrow |f(x)-L|<\varepsilon
   \end{array}


Propiedades de los limites

Límite de una constante
Límite de una constante

Límite de una suma
Límite de una suma

Límite de un producto
Límite de un producto

Límite de un cociente
Límite de un cociente

Límite de una potencia
Límite de una potencia

Límite de una función
Límite de una función
g puede ser una raíz, un log, sen ,cos, tg, entre otros.

Límite de una raíz
Límite de una raíz

Límite de un logaritmo
Límite de un logaritmo

Limites Indeterminados

Se llaman límites indeterminados a los que presentan alguna de estas formas:


Contra lo que se pudiera pensar, un límite de la forma ¥ - ¥ no da, en general, como resultado cero, tampoco un límite de la forma 1¥ da siempre como resultado uno. Por esta razón se les llama límites indeterminados y se requiere hacer un estudio particular para cada caso.

Obsérvese que ya se han estudiado varios casos de indeterminaciones de la 
-¥ a +¥ pasando por todos los valores intermedios.





No hay comentarios:

Publicar un comentario