En matemática, el límite es un concepto que describe la tendencia de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor. En cálculo (especialmente en análisis real y matemático) este concepto se utiliza para definir los conceptos fundamentales de convergencia, continuidad, derivación, integración, entre otros.
Segun Wikipedia: (Cita Original)
El concepto se puede generalizar a otros espacios topológicos, como pueden ser las redes topológicas; de la misma manera, es definido y utilizado en otras ramas de la matemática, como puede ser la teoría de categorías.
Para fórmulas, el límite se utiliza usualmente de forma abreviada mediante lim como en lim(an) = a o se representa mediante la flecha (→) como en an → a.
Limite de una Función
En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de la función. Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.
Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:
si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.
Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:
- "El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distancia entre la imagen de x y L es menor que ε unidades".
Propiedades de los limites
Límite de una constante
Límite de una suma
Límite de un producto
Límite de un cociente
Límite de una potencia
Límite de una función
g puede ser una raíz, un log, sen ,cos, tg, entre otros.
Límite de una raíz
Límite de un logaritmo
Limites Indeterminados
Se llaman límites indeterminados a los que presentan alguna de estas formas:
Contra lo que se pudiera pensar, un límite de la forma ¥ - ¥ no da, en general, como resultado cero, tampoco un límite de la forma 1¥ da siempre como resultado uno. Por esta razón se les llama límites indeterminados y se requiere hacer un estudio particular para cada caso.
Obsérvese que ya se han estudiado varios casos de indeterminaciones de la 
-¥ a +¥ pasando por todos los valores intermedios.